346 research outputs found

    Observation of the parallel-magnetic-field-induced superconductor-insulator transition in thin amorphous InO films

    Full text link
    We study the response of a thin superconducting amorphous InO film with variable oxygen content to a parallel magnetic field. A field-induced superconductor-insulator transition (SIT) is observed that is very similar to the one in normal magnetic fields. As the boson-vortex duality, which is the key-stone of the theory of the field-induced SIT, is obviously absent in the parallel configuration, we have to draw conclusion about the theory insufficiency.Comment: 3 pages, 4 figure

    Double sign reversal of the vortex Hall effect in YBa2Cu3O7-delta thin films in the strong pinning limit of low magnetic fields

    Full text link
    Measurements of the Hall effect and the resistivity in twinned YBa2Cu3O7-delta thin films in magnetic fields B oriented parallel to the crystallographic c-axis and to the twin boundaries reveal a double sign reversal of the Hall coefficient for B below 1 T. In high transport current densities, or with B tilted off the twin boundaries by 5 degrees, the second sign reversal vanishes. The power-law scaling of the Hall conductivity to the longitudinal conductivity in the mixed state is strongly modified in the regime of the second sign reversal. Our observations are interpreted as strong, disorder-type dependent vortex pinning and confirm that the Hall conductivity in high temperature superconductors is not independent of pinning.Comment: 4 pages, 4 figure

    Defect-unbinding and the Bose-glass transition in layered superconductors

    Full text link
    The low-field Bose-glass transition temperature in heavy-ion irradiated Bi_2Sr_2CaCu_2O_8+d increases progressively with increasing density of irradiation-induced columnar defects, but saturates for densities in excess of 1.5 x10^9 cm^-2. The maximum Bose-glass temperature corresponds to that above which diffusion of two-dimensional pancake vortices between different vortex lines becomes possible, and above which the ``line-like'' character of vortices is lost. We develop a description of the Bose-glass line that is in excellent quantitative agreement with the experimental line obtained for widely different values of track density and material parameters.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Investigation of correlation of generated nuclearactive particles in the protonantiproton annihilation at momenta 22.4 and 32 GeV / c

    Get PDF
    Separation of the individual events corresponding to antiproton-proton annihilation gives the possibility to carry out the analysis of multiparticle correlations for generated particles and to compare them with corresponding data for inelastic pp and non-annihilation p̃p interactions..

    Investigation of correlation of generated nuclearactive particles in the protonantiproton annihilation at momenta 22.4 and 32 GeV / c

    Get PDF
    Separation of the individual events corresponding to antiproton-proton annihilation gives the possibility to carry out the analysis of multiparticle correlations for generated particles and to compare them with corresponding data for inelastic pp and non-annihilation p̃p interactions..

    Vortices in coupled planes with columnar disorder and bosonic ladders

    Full text link
    We consider two coupled strongly correlated bosonic chains. We derive the phase diagram of the pure system and obtain an antisymmetric charge density wave, a 4k_F charge density wave, a superfluid phase and a second superfluid phase which is a condensate of boson pairs. We consider the effect of a weak disorder on that system and show that the superfluid phase is less localized than in the one chain case. On the other hand, the pinning length of the antisymmetric charge density wave is shorter than in the one chain case. We discuss the consequences of these results for two coupled vortex planes with columnar disorder. We show that in the vortex system there is a conventional pinned solid phase for 0<T<T_m, a pinned solid phase with superkinks for T_mT_L. We obtain the critical currents by a modified Larkin-Ovchinnikov argument and prove that there is a strong reduction of critical current for T=T_m.Comment: 38 pages, RevTeX, 9 encapsulated PostScript figures submitted to Phys. Rev. B some misprints corrected. One Reference added. Version to appear in Phys. Rev.

    Possible new vortex matter phases in BSCCO

    Full text link
    The vortex matter phase diagram of BSCCO crystals is analyzed by investigating vortex penetration through the surface barrier in the presence of a transport current. The strength of the effective surface barrier, its nonlinearity, and asymmetry are used to identify a possible new ordered phase above the first-order transition. This technique also allows sensitive determination of the depinning temperature. The solid phase below the first-order transition is apparently subdivided into two phases by a vertical line extending from the multicritical point.Comment: 11 pages, 3 figures, accepted for publication in PR

    Transport and Magnetic Properties of R1-xAxCoO3 (R=La, Pr and Nd; A=Ba, Sr and Ca)

    Full text link
    Transport and magnetic measurements have been carried out on perovskite Co-oxides R1-xAxCoO3 (R=La, Pr, and Nd; A=Ba, Sr and Ca; 0<x<0.5: All sets of the R and A species except Nd1-xBaxCoO3 have been studied.). With increasing the Sr- or Ba-concentration x, the system becomes metallic ferromagnet with rather large magnetic moments. For R=Pr and Nd and A=Ca, the system approaches the metal- insulator phase boundary but does not become metallic. The magnetic moments of the Ca-doped systems measured with the magnetic field H=0.1 T are much smaller than those of the Ba- and Sr-doped systems. The thermoelectric powers of the Ba- and Sr-doped systems decrease from large positive values of lightly doped samples to negative ones with increasing doping level, while those of Ca-doped systems remain positive. These results can be understood by considering the relationship between the average ionic radius of R1-xAx and the energy difference between the low spin and intermediate spin states. We have found the resistivity-anomaly in the measurements of Pr1-xCaxCoO3 under pressure in the wide region of x, which indicates the existence of a phase transition different from the one reported in the very restricted region of x~0.5 at ambient pressure [Tsubouchi et al. Phys. Rev. B 66 (2002) 052418.]. No indication of this kind of transition has been observed in other species of R.Comment: 9 pages, 8 figures. J. Phys. Soc. Jpn. 72 (2003) No.

    Physical properties of misfit-layered (Bi,Pb)-Sr-Co-O system: Effect of hole doping into triangular lattice formed by low-spin Co ions

    Full text link
    Pb-doping effect on physical properties of misfit-layered (Bi,Pb)-Sr-Co-O system, in which Co ions form a two-dimensional triangular lattice, was investigated in detail by electronic transport, magnetization and specific-heat measurements. Pb doping enhances the metallic behavior, suggesting that carriers are doped. Pb doping also enhances the magnetic correlation in this system and increases the magnetic transition temperature. We found the existence of the short-range magnetic correlation far above the transition temperature, which seems to induce the spin-glass state coexisting with the ferromagnetic long-range order at low temperatures. Specific-heat measurement suggests that the effective mass of the carrier in (Bi,Pb)-Sr-Co-O is not enhanced so much as reported in NaCo2{}_2O4{}_4. Based on these experimental results, we propose a two-bands model which consists of narrow a1ga_{1g} and rather broad ege'{}_g bands. The observed magnetic property and magnetotransport phenomena are explained well by this model

    Hydrodynamics and Nonlocal Conductivities in Vortex States of Type II Superconductors

    Full text link
    A hydrodynamical description for vortex states in type II superconductors is presented based on the time-dependent Ginzburg-Landau equation (TDGL). In contrast to the familiar extension of a single vortex dynamics based on the force balance, our description is consistent with the known hydrodynamics of a rotating neutral superfluid and correctly includes informations on the Goldstone mode. Further it enables one to examine nonlocal conductivities perpendicular to the magnetic field in terms of Kubo formula. The nonlocal conductivities deviate from the usual vortex flow expressions typically when the nonlocality parallel to the field becomes weaker than the perpendicular one measuring a degree of positional correlations, and, for instance, the superconducting contribution of dc Hall conductivity nonlocal only in directions perpendicular to the field becomes vanishingly small in the situations with large shear viscosity, leading to an experimentally measurable relation ρxyρxx2\rho_{xy} \sim {\rho_{xx}^2} among the total resistivity components. Other situations are also discussed on the basis of the resulting expressions.Comment: 12 pages, no figures, to appear in J. Phys. Soc. Jpn. in October, 199
    corecore